══════════════════【立報】═══════════════════ |
教 育 專 題 深 入 報 導《01.02.2004》 |
本期內容 | |
◎ 發現梅森質數 美國研究生發現最大的質數 | |
◎ 近年來所發現的最大梅森質數 | |
◎ 馬丁.梅森的簡介 | |
◎ 什麼是梅森質數? | |
◎ 什麼是 GIMPS? | |
◎ 面對挫敗的經驗 |
發現梅森質數 美國研究生發現最大的質數 | |
策劃、編譯■ |
盧永山、朱明華、黃琬婷 |
根據《新科學家》雜誌 2003年12月2日報導,美國密西根州立大學化工系研究生麥克.薛佛,發現到目前為止最大的一個梅森質數,它可用220,996,011-1表示,共有6,320,430位數。 麥克‧薛佛是「網際網路梅森質數搜尋計畫」( GIMPS)的志願參與者,他是在2003年11月17日發現這個質數,但同年12月2日才得到驗證。之前,人類發現的最大梅森質數,有4百多萬位數。 西元前 350年,希臘數學家歐基里德證明質數是無限的。此後,許多數學家曾對這種質數進行研究。而後在17世紀,法國神父馬丁‧梅森提出一個可能構成一部分質數的公式:Mp =2p-1,這裏的p也是個質數,因此後人將2p-1形式的質數稱為梅森質數。 牛津大學數學家馬庫斯.桑托伊說,梅森質數的發現對我們理解質數的分布,沒有多大的助益,但可以幫助人類測試電腦運算能力。目前全世界有 6萬多名參賽者響應GIMPS。也許,很多人無法理解這樣的行徑,但就如GIMPS發起人之一的喬治.沃特曼(George F. Woltman),1996年接受加拿大全國廣播電台訪問時所說的,尋找梅森質數這件事情本身並無任何價值可言,但是當你找到一個新的梅森質數時,心情就像登上聖母峰頂,有種征服的快感。 A 26-year-old graduate student in the US has made mathematical history by discovering the largest known prime number. The new number is 6,320,430 digits long. It took just over two years to find using a distributed network(分散式運算) of more than 200,000 computers. Michael Shafer a chemical engineering student at Michigan State University used his office computer to contribute spare processing power to the Great Internet Mersenne Prime Search (GIMPS). The project has more than 60,000 volunteers from all over the world taking part. "I had just finished a meeting with my advisor when I saw the computer had found the new prime," Shafer says. "After a short victory dance, I called up my wife and friends involved with GIMPS to share the great news." Prime numbers are positive integers that can only be divided by themselves and one. Mersenne primes are an especially rare type of prime that take the form 2 p-1, where p is also a prime number. The new number can be represented as 220,996,011-1. It is only the 40th Mersenne prime to have ever been found. Mersenne primes were first discussed by Euclid in 350 BC and have been central to the branch of mathematics known as number theory ever since. They are named after a 17th century French monk who first came up with an important conjecture about which values of p would yield a prime. Primes are the building blocks of all positive numbers. They have practical uses too, for example by providing a way of exchanging the cryptographic keys that keep internet communications secure from eavesdropping. However, despite their significance, mathematicians do not understand the way prime numbers are distributed making it very difficult to identify new primes. Marcus du Sautoy, a mathematician at Oxford University and author of The Music of the Primes, says the discovery is unlikely to add much to our understanding of the way primes are distributed but is still significant. "It's a really good measure of what our computational capabilities are," he told New Scientist. "It's a really fun project. Everyone gets a different bit of the number universe to look at. It's a bit like the lottery." The GIMPS project uses a central computer server and free software to coordinate the activity of all its contributors. Contributing machines are each allocated different prime number candidates to test. Some people contribute to GIMPS out of mathematical curiosity or to test their computer hardware, while others just hope to go down in history as the discoverer of a massive prime. There is also a financial incentive with the Electronic Frontier Foundation, a non-profit US group, offering a $100,000 prize for the discovery of the first prime with 10 million digits. Shafer's discovery was made on 17 November but it was not independently verified until now. "It's humbling to see so many people of varied lands, ages and vocations volunteering for this fun and amazing project," says Scott Kurowski, whose company Entropia manages the GIMPS server. "There are more primes out there," adds George Woltman, who started the GIMPS project in 1996. "And anyone with an internet-connected computer can participate." |
|
(回目錄) |
近年來所發現的最大梅森質數 | |
文 |
Joel Armengaud |
1996年11月23日,29歲的法國巴黎程式設計師Joel Armengaud花了88小時,發現 21,398,269-1這個質數,共420,921 位數。Armengaud說:?譗能夠發現此質數簡直不可思議,質數的數目非常稀少,只有1/35000的機率能夠成為梅森質數。?豃 Gordon Spence 1997年9月1日,38歲家住英國英格蘭漢普郡的Gordon Spence,利用個人電腦,經過15天的計算才發現 22.976,221-1這個質數,共895,932 位數。Spence說:?譗發現這個質數,我只是比較幸運罷了,剛好選對了數字範圍,不過能夠寫下歷史紀錄,還真的讓人非常開心。Roland Clarkson 1998年2月2日,美國加州州立大學學生Roland Clarkson,利用個人電腦,經過1個星期的運算及46天的驗算,才確定發現23,021,377-1這個質數,共909,526位數。做為有史以來第3位年輕的發現者,Clarkson說:?譗真的非常幸運, 我從未想過會是這個數字,因為這個數字跟之前的質數太接近了。 Nayan Hajratwala 1999年6月30日,美國密西根州普利茅斯市的Nayan Hajratwala,花了3個星期以及111天的驗算,才發現26,972,593-1這個質數,共2,098,960 位數。Hajratwala是第一個發現百萬位數以上梅森質數者,並獲得了電子前鋒基金會的5萬美元的獎金。 Michael Cameron 2001年 12月 6日,加拿大安大略省20歲的Michael Cameron利用個人電腦,發現了 213,466,917-1 這個質數,共4,053,946位數。Cameron表示:?譗我的朋友說,如果我常常開電腦一整天,就應該要好好利用,所以我就下載GIMPS的運算軟體。沒想到竟然會有這樣的大發現,真的非常的驚訝與驚喜!」 Michael Shafer 2003年12月2日,美國密西根州蘭辛城的Michael Shafer利用密西根州立大學實驗室的個人電腦,歷經了19天的計算才發現220,996,011-1這個質數,共6,320,430 位數。在電腦發現這個新質數的時候,Shafer才剛結束與指導老師的會議,當時他開心的手舞足蹈,並馬上通知他的妻子與所有關心質數的朋友們。 |
|
(回目錄) |
馬丁.梅森的簡介 | |
在 1588年9月8日,馬丁 梅森(見右圖)於法國緬因的瓦滋誕生。自1609年起,梅森就在索邦大學攻讀神學,1611年加入天主教行乞修士會。不過,他仍在尼就(Nigeon)與莫克斯(Meaux)繼續接受教育,最後則回到他當初成為神父的地方,巴黎的Place Royale。 1614至1618年間,他則在法國納維爾的天主教行乞修士會女修道院教授哲學,直到1619年才重返巴黎,他在巴黎的房子,日後就成為法蘭西學院核心人物的開會地點,包括費馬、帕斯卡、伽桑狄等大數學家均是座上客。梅森本人則在歐洲沒有科學期刊的當時,肩負起聯繫傑出數學家及傳播重要數學知識的責任。 梅森也是傑出的數學家,畢生致力於找出所有的質數,並建立公式。然而,他沒有找出所有的質數,卻發明了找尋質數的數學公式: Mp =2p-1。而這公式對於日後質數的研究有很大的影響。 梅森雖然是神父,但他擁護笛卡兒與伽利略的學說,儘管這些學說當時是反教會的。他繼續探索伽利略的部分研究,也建議荷蘭數學家海更斯將鐘擺用於計時器上,而這激發了世界上第一個鐘擺時鐘的誕生。 1633與1634年,梅森分別出版兩本伽利略談機械的書籍,同時也將伽利略的Dialogo翻譯成法文。因此,伽利略之所以能聞名於世界,絕大部分要歸功於梅森。 Marin Mersenne attended school at the College of Mans, then, from 1604 spent five years in the Jesuit College at La Fleche. From 1609 to 1611 he studied theology at the Sorbonne. Mersenne joined the religious order of the Minims(天主教行乞修士會) in 1611. The name of the order comes since the Minims regard themselves as the least (minimi) of all the religious; they devote themselves to prayer, study and scholarship. Mersenne continued his education within the order at Nigeon and then at Meaux. He returned to Paris where in 1612 he became a priest at the Place Royale. He taught philosophy at the Minim convent(女修道院) at Nevers from 1614 to 1618. In 1619 he returned again to Paris to the Minims de l'Annociade,near Place Royale. His cell in Paris became a meeting place for Fermat, Pascal, Gassendi, Roberval, Beaugrand and others who later became the core of the French Academy. Mersenne corresponded with other eminent mathematicians and he played a major role in communicating mathematical knowledge throughout Europe at a time when there were no scientific journals. Mersenne investigated prime numbers and he tried to find a formula that would represent all primes. Although he failed in this, his work on numbers of the form 2p - 1, p prime has been of continuing interest in the investigation of large primes. It is easy to prove that if the number n = 2p -1 is prime then p must be a prime. In 1644 Mersenne claimed that n is prime if p = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127 and 257 but composite for the other 44 primes smaller than 257. Over the years it has been found that Mersenne was wrong about 5 of the primes less than or equal to 257 (he claimed two that did not lead to a prime (67 and 257) and missed 3 that did: 61, 89, 107). Mersenne defended Descartes and Galileo against theological criticism and struggled to expose the pseudo sciences of alchemy(鍊金術)and astrology(占星學). He continued some of Galileo's work in acoustics(聲學) and stimulated some of Galileo's own later discoveries. He proposed the use of the pendulum as a timing device to Huygens, thus inspiring the first pendulum clock. In 1633 Mersenne published Traite des mouvements, and in 1634 he published Les Mechanique de Galilee which was a version of Galileo's lectures on mechanics. He translated parts of Galileo's Dialogo into French and in 1639 he published a transation of Galileo's Discorsi. It is through Mersenne that Galileo's work became known outside Italy. Two important publications in mathematical physics were L'Harmonie Universelle (1636) and Cogitata Physico-Mathematica (1644). Mersenne also wrote Traite d'harmonie universelle (1627), a work on music, musical instruments and acoustics. After his death letters in his cell were found from 78 different correspondents including Fermat, Huygens, Pell, Galileo and Torricelli. |
|
(回目錄) |
什麼是梅森質數? | |
一個大於 1的整數,如果不能被其他的正整數整除,也就是只能被其本身或是1整除,這個整數就叫做質數。例如,10可以被2與5整除,就不是質數,相反的,7只能被1與7整除,所以7就是質數。 法國神父馬丁‧梅森提出 Mp =2p-1的質數公式,依此公式,只要 p 是一個質數,2p-1就會是一個質數。這種情形對於 p=3(7)、p=5(31)、p=7(127)都是正確的,然而當p=11(2047=23*89)就不是正確的了。不過迄今為止,大家仍以此公式,尋找最大的梅森質數。梅森質數的數量不多,麥可.薛佛所發現的220,996,011-1,是人類目前所發現的第40個。 |
|
(回目錄) |
什麼是 GIMPS? | |
(http://www.mersenne.org/prime.htm) 隨著第 40個梅森質數的發現,許多人開始對「網際網路梅森質數搜尋計畫」(GIMPS)感到好奇,一般人會認為,參與這項計畫需要相當的數學基礎。但事實上,只要擁有一台電腦,上網下載專屬的運算程式Primes95,捐出電腦閒置時的資料處理效能,也許下一個登上金氏紀錄的幸運人物就是你。 1996年,喬治.沃特曼與史考特.庫勞斯基(Scott Kurowski)發起了一項名為GIMPS的團隊。在GIMPS中,每個參賽者都會分配到一個不同的梅森數,透過分散式運算的概念,以接力的方式找出質數。由於Primes95程式是以最低的優先順序,在參賽者的電腦中執行,因此並不影響平時的電腦使用,可以隨時停止程式運算,也可以從上回停止的地方再度開始。 同時,「電子前鋒基金會」( Electronic Frontier Foundation)也對這項計畫發出了懸賞,第一個找出超過千萬位質數的參賽者或機構,將頒給10萬美金;超過1億位數,將頒給15萬美元;找到10億位的,則可獲頒25萬美元。 當然,這筆獎金得來並不容易,專家預估,第 41個梅森質數所需要的運算量,將是第40個的125倍。當然,誰也說不準,在成功機率為25萬分之一的情況下,也許你就是下一個獲得獎金的幸運兒。 |
|
(回目錄) |
第二章 面對挫敗的經驗(完) | |
文 |
劉建國 |
「論妳的實力,今年考不上實屬正常。咱們在申請表上明確填了如果沒有政府獎學金就不上,所以要考上聖保羅確實是難上加難。妳才從中國來英國 3年,而且才上到小學五年級,如果能夠輕易考上,那聖保羅水平也低了點兒吧。如果妳竟然考上了,那只能說是奇蹟發生,無比幸運。而這對妳未必真有好處,妳會覺得成功來得太容易,會無法克制地洋洋得意,這有可能導致在無可挽回的關鍵時刻走向失敗。所以,爸爸確實認為這次失敗是一件好事,當然這有一個條件,那就是妳要能夠從失敗的陰影中堅強地走出來,認真總結經驗,毫不氣餒,繼續進取。爸爸從來不認為自己的女兒是稀世天才,但我有充分的理由相信妳非常聰明,能力極強。能不能考上聖保羅是小事,妳要充滿堅實的自信這是大事。」 「爸爸,你失敗過嗎?你失敗了難過嗎?」 「唉,說到爸爸,那就別提了。爸爸是個失敗大王,而且運氣不好。上小學時趕上大躍進,長身體時趕上三年自然災害,想讀書時趕上『文革』上山下鄉,好不容易上了個大學還是工農兵學員,該成家了又趕上晚婚晚育。當然也好,如果 18歲就可以結婚的話,妳媽這朵鮮花八成就插不到爸爸這個牛糞堆上了。」 「爸爸就會胡說八道,真不愧是個牛糞堆,整天臭烘烘的。」女兒終於笑了。 「幸虧小時候不是妳爸管,要不然不知把妳教成什麼樣。」太太數落我。 「爸爸這一生不知失敗過多少次,但畢竟幾次成功就可以使妳的人生很不一樣。我對自己並不滿意,不過比起當年老三屆一起下鄉的同學,當兵時的戰友,在我所認識的人中只有我一個人走得這麼遠。他們一定會認為我很成功。成功和失敗從來不能用簡單的數量來衡量。愛迪生發明電燈泡,失敗了千百次,但只要成功一次就夠了,這成功就會持續到永遠,一切失敗就都不存在了,失敗只是走向成功的歷程。失敗使人痛苦,但只要最終能成功,失敗就是暫時的,痛苦就會被快樂取代。」 「爸爸,你講得真好,聽了特別有勁,我都想給你鼓掌。」女兒的心像是被投進了一片光明。 「一個人聰明伶俐,事事如意,這只是小聰明。一個人如果能不怕失敗,在逆境中百折不撓地取得成功,這才是大聰明。大聰明不僅要腦袋瓜靈還要意志堅強。」我總結道。 「爸爸,你放心吧,我不會洩氣的,我一定要考上聖保羅!」女兒堅定地對我說。 「好樣的!就憑這點志氣就應該表揚應該獎勵!」我拍拍女兒的小肩膀,表示很夠哥們兒。 下午我們一家人到商業街上散散心,給佳佳買了一個兔子軟軟作為對她敗不餒的獎勵。我認為這時候對孩子的獎勵比對她成功時的獎勵更重要,這時孩子最需要的是理解、撫慰和支持。 佳佳果真像她所說的那樣,很快穩定下來,把一試聖保羅未成的失敗的苦水咽下去,把心中的失望和不快拋到腦後,又快樂地學習、玩耍、生活。孩子畢竟是孩子,來得快去得也快。我驚奇地看到,一個孩子的心理承受能力和可塑性實在是潛力很大。因此,教育的重要性無論怎樣強調都不過分。 |
|
(回目錄) |
參觀立報: |
http://www.lihpao.com |
寫信給小編e-mai: |
fiveguys@ms19.hinet.net |
立報地址: |
台北縣新店市光復路43號 |